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We show that a signal can propagate in a particular direction through a model
random medium regardless of the precise state of the medium. As a prototype,
we consider a point particle moving on a one-dimensional lattice whose sites are
occupied by scatterers with the following properties: (i) the state of each site is
defined by its spin (up or down); (ii) the particle arriving at a site is scattered
forward (backward) if the spin is up (down); (iii) the state of the site is modified
by the passage of the particle, i.e., the spin of the site where a scattering has
taken place, flips (A � a ). We consider one-dimensional and triangular lattices,
for which we give a microscopic description of the dynamics, prove the propaga-
tion of a particle through the scatterers, and compute analytically its statistical
properties. In particular we prove that, in one dimension, the average propa-
gation velocity is (c(q)) =1�(3&2q), with q the probability that a site has a
spin A, and, in the triangular lattice, the average propagation velocity is inde-
pendent of the scatterers distribution: (c) =1�8. In both cases, the origin of the
propagation is a blocking mechanism, restricting the motion of the particle in
the direction opposite to the ultimate propagation direction, and there is a
specific reorganization of the spins after the passage of the particle. A detailed
mathematical analysis of this phenomenon is, to the best of our knowledge,
presented here for the first time.
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1. MOTIVATION

Discrete systems with simple microscopic dynamics can exhibit peculiar
behavior showing some degree of complexity on a large scale. These
systems have raised particular interest because they can be viewed as
paradigms for complex phenomena such as growth processes, signal
propagation in random media, spatio-temporal structuring in excitable
media, or evolutionary dynamics.(1) In particular, phenomena such as
anomalous diffusion and oscillatory propagation have been reported by
Cohen and co-workers(2) who studied, numerically and theoretically, the
motion of a particle in two-dimensional Lorentz Lattice Gases whose
sites are occupied by scatterers which deflect the particle according to an
a priori given rule. The most striking behavior in the particle dynamics
is observed when the rule includes a feed-back of the particle on the sub-
strate: the passage of the particle modifies the scattering property of the
visited sites, e.g., if a particle arriving at a site is scattered say to the
right (R), the state of the site is changed (R O L) such that on its next
visit the particle will be scattered to the left (``flipping scatterers''). This
``interaction'' between the particle and the state of the scatterer modifies
considerably the dynamics as compared to the classical Lorentz Lattice
Gas. For instance, lattices with flipping scatterers can yield oscillatory
motion with overall propagation, (2) while random fixed scatterers
produce closed trajectories. Bunimovich and Troubetzkoy proved a num-
ber of theorems about the boundedness or unboundedness of the trajec-
tories of the particle for certain lattice models, and also discussed some
generalizations.(3)

In order to illustrate the propagative behavior, we show in Fig. 1 the
case of a random Delaunay lattice:(4) here the particle arriving at a node
is deflected with the largest possible angle, either to the right or to the left,
depending on the state of the scatterer (which after the passage of the par-
ticle goes into the reverse state); whatever the initial configuration of the
scatterers on the lattice, the particle will, after a few time steps, always
enter a propagation phase (see the propagation strip shown in Fig. 1).

Here we present a detailed mathematical analysis of unbounded trajec-
tories in one-dimensional and two-dimensional (triangular) lattices. In par-
ticular we show that for any initial configuration of the scatterers, the
particle will always propagate in a certain direction with a given average
velocity. The direction of the propagation is determined by the initial
velocity of the particle and the initial state of the scatterers in a small
neighborhood of the initial position of the particle. On the triangular lattice
the entire trajectory becomes quickly confined to a particular strip, which
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Fig. 1. Propagation in a random Delaunay lattice, where the particle arriving at a site of the
random lattice is deflected over the largest possible angle there, either to the right or to the
left, depending on the R or L nature of the scatterer. Arrows illustrate particle displacements.
The shaded area shows the propagation strip.

is bounded by two adjacent parallel lines of the lattice.4 The propagation
is due to a blocking mechanism which prevents the particle from moving in
a direction opposite to the propagation direction for more than a few steps;
thus the particle can visit any lattice site at most three times in one dimen-
sion, and six times on the triangular lattice. The blocking mechanism is due
to an organization of the scatterers induced by their interaction with the
moving particle, which itself is thereby forced to propagate indefinitely in
a particular direction. While in one dimension the rearrangement of the
scatterers after the passage of the particle is a simple mapping of the initial
configuration, on the triangular lattice a self-organization of the scatterers
takes place along the propagation strip: the visited sites on one of the two
boundary lines are occupied by only one kind (R or L) of scatterers, while
the other boundary line is occupied by only the other kind (L or R). We
find another important distinction: the average propagation velocity
(averaged over all possible initial distributions of the scatterers with a fixed
ratio of R and L scatterers) in one dimension, depends on the a priori
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4 This propagation phenomenon was first observed and analyzed on the triangular lattice by
Kong and Cohen.(2)



probability that a site has a spin A, while in the two-dimensional (tri-
angular) lattice, it is a constant (independently of the probability that a site
has a L or R scatterer).

We first consider the one dimensional lattice. In Section 2, we define
the 1-D system considered here, introduce the basic equations describing
the microscopic dynamics, and prove propagation of the particle; Section 3
is devoted to a detailed study of the statistical properties of the particle
motion. The triangular lattice is treated in Section 4 where particle
propagation and its general and statistical properties are analyzed. All our
analytical results are shown to be in agreement with our corresponding
numerical simulation data obtained for one- and two-dimensional lattices.
We conclude with some general comments (Section 5).

2. THE 1-D LATTICE

We consider a regular one-dimensional lattice where a single particle
moves from one site to the next, with the following properties: (i) the state
of each site is defined by its spin (up or down); (ii) the particle arriving at
a site is scattered forward (backward) if the spin is up (down); (iii) the spin
of the site where a scattering has taken place, flips (A O a, a O A).5 Setting
the distance between neighboring sites and the speed of the particle equal
to unity, the particle moves from one lattice site to the next in one unit
time step. The initial position and velocity of the particle are arbitrarily
fixed, and the spins are arbitrarily distributed on the lattice with an a priori
probability q that a site has a spin A.

2.1. Definitions

(i) Define the position R(t) of the particle at time t as the location
of the site r where the particle resides at time t.

(ii) Define the velocity of the particle: C(t), whose value is +1
(when the particle moves to the right) or &1 (when it moves to the left).6
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5 A generalization to more complicated transitions in the scattering properties of the sites has
been considered for cyclic cellular automata by Bunimovich and Troubetzkoy (3) who proved
a number of general theorems, without having to use explicitly the equations of motion for
the particle and the equations for the dynamics of the scatterers.

6 With the convention that the positive direction on the 1-D lattice is from left to right, we
can omit vectorial notation for simplicity.



(iii) Define the spin (the orientation of the scatterer)7 at site r, at
time t, as a Boolean variable: '(r, t), with value +1 (spin up, which does
not modify the velocity of the particle), or &1 (spin down, which reverses
the velocity of the particle from C=+1 to C=&1 or vice versa).

2.2. Basic Equations

(1) At each time step the particle moves to a neighboring site accord-
ing to its velocity, and its new position is given by the equation of motion:

R(t+1)=R(t)+C(t) (2.1)

(2) The velocity of the particle at its new position is maintained
or reversed, depending on the state of the spin (the orientation of the
scatterer):

C(t+1)=C(t) '(R(t+1), t) (2.2)

In '(R(t+1), t), t refers to the time corresponding to the state of the spin
before flipping; we shall denote by t+ the time just after the particle
arrived at a site and made its spin flip (A � a).

(3) The spin of the site hit by the particle is reversed (all other spins
remain unchanged):

'(r, t+1)='(r, t)(1&$r, R(t+1))&'(r, t) $r, R(t+1)

='(r, t)(1&2$r, R(t+1)) (2.3)

so

'(R(t+1), t+1)=&'(R(t+1), t) (2.4)

Equations (2.1), (2.2), and (2.4) are the basic equations of the
dynamics on the 1-D lattice.

2.3. Propagative Motion

We say that the particle propagates in one direction on the one-dimen-
sional lattice, if it visits any lattice site not more than some fixed finite
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7 In previous publications(2) the scatterers were indicated as to their right or left scattering
properties (R or L); for the 1-D case a representation of the scatterers by up or down spins
is more convenient.
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number of times. This definition implies that the trajectory of the particle
tends to +� or &�, when the time goes to infinity. Indeed since the par-
ticle cannot return to a site after it has visited it a finite number of times,
the particle must remain on a semi-line to the right (or to the left) of this
site, which holds equally for the next visited site. Consequently the position
of the particle must approach +� or &� when t � �.

We now formulate the propagation theorem.

Theorem 1. A particle moving from site to site in a one-dimen-
sional lattice fully occupied with flipping scatterers (spins), propagates in
one direction, independently of the initial distribution of the spins on the
lattice. The propagation direction depends upon the orientation of the spin
at the origin of the particle motion (r=0) and of that at the site r=+1,
if the initial particle velocity C(t=0+)#C(0+)=+1, or alternatively of
that at site r=&1, if C(0+)=&1.

Proof. Without loss of generality we assume that the initial velocity
of the particle is positive, i.e., C(0+)=1. Then we have to consider two
cases according to whether the spin of the site at the origin (r=0, t=0) is
either A or a (see Fig. 2 for illustration of the proof ).

A. If at t=0+, '(R(0), 0+)='(0, 0+)=&1, there are two possi-
bilities:

Fig. 2. Scattering on the one-dimensional lattice illustrating the proof of Theorem 1 (see
text); the blocking patterns are framed with dotted squares.
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(1) the spin at time 0 at the position R(1) is A, i.e., '(R(1), 0)=
'(1, 0)=1. Then at time 1+, C(1+)=1 and '(R(1), 1+)='(1, 1+)=&1;

(2) the spin at time 0 at the position R(1) is a, i.e., '(R(1), 0)=
'(1, 0)=&1. At time 1+, C(1+)=&1 and '(1, 1+)=+1, while at time
2+, C(2+)=+1 and '(R(2), 2+)='(0, 2+)=1. Then at time 3+,
C(3+)=1 and '(R(3), 3+)='(1, 3+)=&1.

Therefore in both cases (1) and (2), the system is in a state where the
particle is at r=1, leaving the visited sites with the velocity +1 (C(1+)=1
in case (1) and C(3+)=1 in case (2)), while the scatterer at this site
(r=1) is a. Thus we retrieve the initial situation shifted by one lattice unit
to the right, and consequently the same analysis can be repeated for the
next site, and so on.

We call the state of the system when C(t+)=1 and '(R(t), t+)=&1,
a left blocking pattern. So the above analysis shows that a left blocking pat-
tern at the site R(t) will be shifted to a left blocking pattern at the next site
to the right of R(t) at R(t)+1, in one time step in case (1) (R(t+1)=
R(t)+1), or in 3 time steps in case (2) (R(t+3)=R(t)+1), leading, in
both cases, to propagation of the particle to the right.

B. If at t=0+, '(R(0), 0+)='(0, 0+)=+1, there are again two
possibilities:

(1) the spin at time 0 at the position R(1) is A, i.e., '(R(1), 0)=
'(1, 0)=+1. Then C(1+)=1 and '(R(1), 1+)='(1, 1+)=&1, and the
same blocking pattern obtains at r=1 at the time t=1+, as in case A(1).

(2) the spin at time 0 at the position R(1) is a, i.e., '(1, 0)=&1.
Therefore C(1+)=&1 and '(R(1), 1+)='(1, 1+)=1. Then at time 2+,
C(2+)=&1 and '(R(2), 2+)='(0, 2+)=&1, and we obtain a situation
opposite to that in Case A(2), which implies that there is now a right
blocking pattern leading to a propagation to the left. Thus the same
analysis is applicable here, if one changes positive velocities and position
changes to negative ones and vice-versa.

We conclude (see Fig. 2) that there are three cases where the initial
conditions for C and ' produce a left blocking mechanism and a propaga-
tion to the right:

A(1): C(0+)=+1, '(0, 0+)=&1, '(1, 0)=+1

A(2): C(0+)=+1, '(0, 0+)=&1, '(1, 0)=&1

B(1): C(0+)=+1, '(0, 0+)=+1, '(1, 0)=+1

581Propagation and Organization in Lattice Random Media
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and one initial condition:

B(2): C(0+)=+1, '(0, 0+)=+1, '(1, 0)=&1

which produces a right blocking mechanism and a propagation to the left.
Clearly the same analysis holds if the initial velocity of the particle is

to the left: for C(0+)=&1, there are three cases where the propagation is
to the left, and one where the propagation is to the right. Propagation in
the direction of the initial velocity occurs in three out of four cases. Notice
that by fixing the initial condition with only one spin: '(R(0), 0+)=&1,

Fig. 3. Example of spin reorganization in 1-D lattice. The broken line is the particle trajec-
tory. Black dots are sites with spin down, and open squares (shown only for the initial and
final configurations) are sites with spin up. The spin reorganization is well observed by com-
paring the top row with the bottom row: M � g (with one site shift to the left).
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i.e., the spin is set a at the origin, the particle always propagates in the
direction of its initial velocity.

Two corollaries follow from Theorem 1.

Corollary 1. A particle moving on a 1-D lattice fully occupied with
flipping scatterers visits any lattice site at most three times.

The proof follows immediately from Theorem 1 as a consequence of
the blocking mechanism.

Corollary 2. The propagation velocity Cl between two sites
separated by a distance l containing u spins A, is Cl=(3&2u�l)&1.

Proof. We first note that the time tl taken by the particle to cover
the distance l equals l plus twice the number of times the particle visits
a site with spin a, forcing the particle into a backward-forward motion.
Thus tl=l+2(l&u)=3l&2u. Since Cl=l�tl , the corollary follows
immediately.

Finally we note that after the passage of the particle through the
lattice, all spins of the visited sites have been reversed (A � a) with a shift
of one lattice site opposite to the ultimate velocity of propagation. This
reorganization of the spins, which is a consequence of the blocking
mechanism, is illustrated in Fig. 3.

3. STATISTICAL PROPERTIES

Statistical properties are obtained by considering average quantities
( } } } ) , where the average is taken over all initial spin configurations, with
the initial a priori probability q that a site is in the state A.

3.1. Average Velocity

From Corollary 2, it follows immediately that the average time (tl)
taken by the particle to cover a finite segment of length l on the 1-D lattice
is: (tl) =3l&2(u)=l(3&2q). Then the average propagation velocity
(c(q))#c(q) is given by

c(q)=l�(tl) =1�(3&2q) (3.1)

independently of the direction of propagation and regardless of the way the
spins are organized. Examples are shown in Fig. 4.
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Fig. 4. Propagation velocity in 1-D lattice: for q=1 (all spins initially up) (c) =1 (upper
line): q=0.5 (for two different spin configurations; middle lines) (c) =1�2; and q=0 (all
spins initially down) (c) =1�3 (lower line).

3.2. Time Evolution

The equation of motion of the particle can be written in terms of two
Boolean variables:

(i) the occupation variable n(r, t), which is equal to 1 if the particle
is at site r at time t for the first time; otherwise n(r, t)=0;

(ii) the state of the spin at site r at time t: !A(r, t)=1 if the spin
is A, and !a(r, t)=1 if the spin is a, with �j=A, a !j=1.8 Then the equation
for n(r, t) reads

n(r, t)=!A(r&1, 0) n(r&1, t&1)+!a(r&1, 0) n(r&1, t&3) (3.2)

which is a microscopic equation.

We now define P1(r, t)=(n(r, t)) , the probability that the particle,
starting at the origin, visits site r at time t for the first time. In the following
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we shall use f (r, t)#P1(r, t) for short, with the property �t P1(r, t)#
�t f (r, t)=1, \r>0, which follows from the fact that each site will have a
first visit. We also have (!A(r, 0))=q and (!a(r, 0)) =1&q, \r. Averag-
ing the basic equation (3.2) over all initial configurations and using the fact
that (!n) on the r.h.s. of (3.2) can be written as (!)(n) then yields

f (r+1, t+1)=qf (r, t)+(1&q) f (r, t&2) (3.3)

which shows a formal analogy with the equation for the biased random
walk (BRW).9 For convenience in the forthcoming development, we per-
form a shift of variable (t � t+2) to rewrite Eq. (3.3) as

f (r+1, t+3)=qf (r, t+2)+(1&q) f (r, t) (3.4)

Considering that the particle, arriving from the left, is at r=0 for the first
time at t=0 with unknown velocity, and that the spin at r=&1 is down,
the initial conditions are given by

f (r, t=0)=$r, 0 ; f (r, t=1)=q$r, +1 ; f (r, t=2)=q2$r, +2 (3.5)

Introducing the space-Fourier transform fk(t)=F[ f (r, t)] and its discrete
Laplace transform f� k(s)=L[ fk(t)], we note that

LF[ f (r+n, t+m)]

=e@kn[emsf� k(s)&emsfk(0)&e(m&1) sfk(1)& } } } &esfk(m&1)] (3.6)

Equation (3.4) is then Fourier�Laplace transformed to yield

e@kes[es[es( f� k(s)& fk(0))& fk(1)]& fk(2)]

=qes[es( f� k(s)& fk(0))& fk(1)]+(1&q) f� k(s) (3.7)

with

fk(0)=1; fk(1)=qe@k; fk(2)=q2e2@k (3.8)
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g(r, t) is the distribution of the random walker which, at each time step, moves to the right
or to the left with probability h and 1&h respectively (for h=1�2, the equation describes the
usual random walk). For a comparison with Eq. (3.3), see also ref. 7.



which follow from the initial conditions (3.5). Setting z=es and }=e@k, the
solution to Eq. (3.6) reads

f� }(z)=z
z2+q(}&1�})+q2(}2&1)

z2(z&q�})&(1&q)�}
(3.9)

The function f� }(z) can be explicitly inverted in time and space for q=1
and q=0; the results for f (r, t)#P1(r, t) are given, as expected, in terms of
$-functions, $(r, t) for q=1 and $(r, t�3) for q=0. When q{0 or 1, we
consider the case }=1, i.e., the limit of long wavelengths (k=0), for which
the poles of the above transform can be computed easily;10 we obtain

f� }=1(z)=z3[(z&z0)(z&z+)(z&z&)]&1 (3.10)

where

z0=1; z\=(1&q)1�2 (cos |�@ sin |) (3.11)

with

cos |=&1
2 (1&q)1�2, sin |= 1

2 (3+q)1�2 (3.12)

The function f� }=1(z) is then inverted (using residues) to obtain the explicit
expression for fk=0(t)=�r f (r, t); after some straightforward algebra, we
find

fk=0(t)=
1

3&2q
[1+2(1&q) e&`t(cos |t+. sin |t)] (3.13)

with

`=
1
2

log
1

1&q
, |=arc tan &�3+q

1&q
, .=

q
(1&q)1�2 (3+q)1�2

(3.14)

The case q=0 provides a trivial but illustrative example; it is
straightforwardly verified that the solution then reads

f q=0
k=0(t)=

1
3 \1+2 cos

2?
3

t+ (3.15)
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which is a repeated sequence of values (1, 0, 0) as can be inferred from the
dynamics of the particle when all spins are initially down. The case q=1
(all spins initially up) yields the obvious result f q=1

k=0(t)=1.
The long-time behavior of fk=0(t) is easily obtained from the limit

s � 0 of f� k=0(s) by expanding f� k=0(s) to lowest order in s

lim
s � 0

f� k=0(s)=
1
s

1
3&2q

(3.16)

which yields by Laplace inversion

lim
t � �

fk=0(t)=
1

3&2q
(3.17)

This result, combined with (3.1), shows that

lim
t � �

:
r

P1(r, t)=c(q) (3.18)

In Fig. 5 we show that the above analytical results and the simulation data
are in perfect agreement. An alternative derivation of (3.18), directly based
on the analysis of the particle dynamics, is given in Appendix A.

Fig. 5. fk=0(t) as a function of t for q=0.1. Simulation results (dots) and theory, Eq. (3.13)
(lines).
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3.3. Space Evolution

We now construct an explicit analytical expression in r and t for the
probability that the particle visits, for the first time, site r at time t, i.e., the
function P1(r, t). Consider, on the 1-D lattice, a segment with length l (in
lattice units) and with spin configuration ['i ]=('0 , '1 ,..., 'l), where 'i=A
or a. Suppose that at time zero, the particle is at site r=0 with velocity
C(0+)=+1, and the spin is '0=a. Then the time { taken by the particle
to travel the distance l is {(l, ['i ])=1+NA+3Na , where NA and Na are
the numbers of sites with spin up and spin down, respectively, between
r=1 to r=l&1 (since the spin 'l is unimportant). So Na=l&1&NA and

{(l, ['])=3l&2(1+NA) (3.19)

The probability for the particle to be for the first time at site r at time t for
a given spin configuration is

P1(r, t; ['i ])=$t, {(r, ['i ]) (3.20)

so that

P1(r, t)= :
['i ]

$t, {(r, ['i ]) P(['i ]) (3.21)

where P(['i ]) is the probability of the spin configuration ['i ]

P(['i ])=\r&1
NA + qNA(1&q)r&1&NA (3.22)

with q the probability that a site has spin A. Furthermore, using (3.19) for
l=r, we have

P1(r, t)= :
r&1

NA=0

$t, 3r&2(1+NA) \r&1
NA + qNA(1&q)r&1&NA

=\ r&1
1
2 (3r&t&2)+ q(3r&t&2)�2(1&q) (t&r)�2

=\ r&1
1
2 (t&r)+ q(r&1)&(t&r)�2(1&q) (t&r)�2 (3.23)

and it is a matter of simple algebra to show that (3.23) is a solution of the
difference equation (3.3). This solution is valid for any spin configuration

588 Grosfils et al.
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Fig. 6. Space-time evolution of P1(r, t) for q=0.5. The x-axis denotes space.

with NA=0,..., r&1. For the trivial cases where all spins are either up or
down, one can easily verify the obvious results

PNA=r&1
1 (r, t=r)=1; PNA=0

1 (r, t=3r&2)=1 (3.24)

An example of space-time evolution of the system based on Eq. (3.23) is
shown in Fig. 6.

3.4. Long-Time Large-Distance Behavior

An interesting result follows from the computation of the average time
the particle takes to cover a distance r when r is large. In (3.23), we set
(1&q)= p and (t&r)=2a, and we consider r large (i.e., r>>1); then
P1(r, t) can be rewritten as

P1(r, a)=\ r
a+ paqr&a (3.25)

Using a standard procedure of probability theory,(8) we have

(a) =_:
a

a \ r
a+ paqr&a&q=1& p

=_p
�

�p
( p+q)r&q=1& p

=rp (3.26)
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which we rewrite as

1
2

((t) &r)=r(1&q) or
(t)

r
=3&2q (3.27)

i.e., we retrieve the expression for the average velocity c(q)=(3&2q)&1.
We now compute the explicit analytical expression of P1(r, t) for

large r. We consider p, q fixed, and r>>1, such that (1�r) |a&rp| � 0,
which is equivalent to [(t�r)&(3&2q)] � 0, the limit we expect for long
times. Then using Stirling's formula in the binomial coefficient of (3.25),
and performing a Taylor expansion in $a=a&rp, (9) we obtain

P1(r, a)| r>>1=(2?rpq)&1�2 exp(&$a2�2rpq) (3.28)

Noting that $a�r= 1
2 [(t�r)&(3&2q)], (3.28) can be rewritten as

P1(r, t)| r>>1=
1

- 2? (rpq)1�2
exp &

(r&(r(t)) )2

2#r
(3.29)

with

(r(t)) =t(3&2q)&1=c(q) t and #=4pq(3&2q)&2=4pqc2(q)

(3.30)

In Fig. 7 we show a comparison between simulation data, the computation
of the binomial expression (3.23), and the analytical result (3.29).

The connection with the results of Subsection 3.2, in particular with
the function fk=0(t � �), is easily established by taking the Fourier trans-
form of (3.29) in the limit k=0, that is ��

0 dr P1(r, t); by setting r=x2,
:=(3&2q)�- 8pq, and ;=:(r) , we obtain from (3.29)

1
2 |

�

0
dx P1(x)=

1

2 - 2? ( pq)1�2
e2:; |

�

0
dx e&:2x2&;2�x2

=
1

3&2q
(3.31)

which is exactly the result (3.17).11

3.5. Total Probability Distribution

In Section 2.3 we showed that any lattice site can be visited at most
three times (Corollary 1). So we define P1(r, t), P2(r, t), and P3(r, t), as the
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11 Note that the factor 1�2 on the l.h.s. of (3.31) comes from the fact that the binomial coef-
ficient in (3.25) must be interpreted as zero if r and a are not of the same parity since r and
t must have same parity.
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Fig. 7. The probability P1(r, t) as a function of r at t=500. Simulation data (black dots),
binomial expression (3.23) (open circles), and Eq. (3.29) (curve).

probabilities that the particle be at site r at time t for the first, second, and
third time, respectively. We also introduce the probability P21(r, t) for the
particle to be at site r at time t for the second time, without ever having
visited the next site (at r+1); then the particle must have visited site r two
time-steps earlier and this was a first-time visit and the spin was down (see
Fig. 8a). Therefore

P21(r, t)=(1&q) P1(r, t&2) (3.32)

Equation (3.3) for f (r, t)=P1(r, t) is regained by noticing that a first visit
at site r+1 at time t+1 results from either a direct displacement of the
particle from r to r+1 when the spin at r is up, i.e., qP1(r, t), or a second
visit at r two time-steps earlier, as described above; so the equation for
P1(r, t) reads

P1(r+1, t+1)=qP1(r, t)+P21(r, t)=qP1(r, t)+(1&q) P1(r, t&2)

(3.33)

which is exactly Eq. (3.3), with f (r, t)#P1(r, t).
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Fig. 8. Situations on the 1-D lattice leading to second visits, (a) and (b), and to third visit, (c).

Now to obtain an expression for P2(r, t), two cases must be considered:
the first is that of Fig. 8a, which yields the contribution given by (3.32),
and the second, illustrated in Fig. 8b, contributes q(1&q) P1(r, t&2).
Consequently

P2(r, t)=(1&q2) P1(r, t&2) (3.34)

There is only one situation which produces three consecutive visits to the
same site, as shown in Fig. 8c: the site must have been visited for the first
time four time-steps earlier, and the particle must have moved twice back-
wards during these four time-steps, which yields

P3(r, t)=(1&q)2 P1(r, t&4) (3.35)
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So the total probability that the particle be at site r at time t reads

P(r, t)=P1(r, t)+(1&q2) P1(r, t&2)+(1&q)2 P1(r, t&4) (3.36)

with the property �r P(r, t)=1, \t.
The long-time behavior of the total probability P(r, t) is readily

obtained by taking t>>1 in (3.36), which yields

P(r, t)| t>>1=(3&2q) P1(r, t)| t>>1 (3.37)

Since t>>1 also implies r>>1, it follows from (3.29) that

P(r, t)| t>>1=�2
?

1
(#r)1�2 exp&

(r&(r(t)) )2

2#r
(3.38)

where #=4c2pq, (r(t))=c(q) t (see (3.30)). Alternatively we write (3.38)
as

P(r, t)| t>>1=�2
?

3&2q
2( pqr)1�2 exp &

(t&(t) )2

2(4pq) r
(3.39)

with (t)=r�c(q). Then the following properties, obtained from (3.38) and
(3.39),

P(r=(r(t)) , t � �)=
1

- 2? \
(3&2q)3

q(1&q) +
1�2 1

t1�2 (3.40)

and

( (t&(t) )2) 1�2=2 - 2pq r1�2 (3.41)

show that, for long times, the amplitude of the probability distribution
P(r, t) decays like t&1�2 and its width grows like - r.

We also note that, by taking the sum over r in (3.36), followed by the
long-time limit (t>>1), we obtain

1=(3&2q) lim
t � �

:
r

P1(r, t) or lim
t � �

:
r

P1(r, t)=c(q) (3.42)

in accordance with our previous results (see Subsection 3.2). In Fig. 7 we
show the long-time behavior of P1(r, t), which is the same (within a con-
stant factor, see (3.37)) as that of P(r, t).
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Finally it is interesting to note that P(r, t), as given by (3.39), is the
solution of the differential equation

�rP(r, t)+
1
c

�t P(r, t)=
1
2

(4pq) �2
t P(r, t) (3.43)

which can be shown to be the continuous limit of the difference equation
for P(r, t).(7) The appearance of a Gaussian distribution in time, (3.39), and
the differential equation with propagation (3.43) for long times are natural
consequences of the averaging over the initial spin distributions.

4. THE 2-D TRIANGULAR LATTICE

We consider the motion of a particle on a triangular lattice fully
occupied by rotators (flipping scatterers) which rotate the velocity vector of
the particle by an angle of 2?�3 either to the right or to the left, depending
on whether the rotator on the site hit by the particle is a R or a L scatterer,
respectively.12 The state of the rotator at the site where the scattering took
place, changes: R � L. Simulations show that, whatever the initial con-
figuration of scatterers, the particle always goes into a propagation phase
in the direction of one of the lattice axes.(2) An example is given in Fig. 9.
Here we show how propagation can be proved mathematically, and we
derive the statistical properties of the dynamics of the particle.

4.1. Definitions

(i) The propagation of the particle on the triangular lattice always
takes place in a strip which is defined a follows: a strip is a region of the
triangular lattice bounded by two adjacent (parallel) lines, both oriented
along one of the lattice axes.

(ii) In accordance with the 1-D case, we define particle propagation
as follows: a particle propagates in one direction in a strip if its motion is
confined to the strip (defined by its initial velocity and its velocity after the
first scattering event) where the particle visits any site not more than a
fixed number of times.

(iii) The particle's velocity vector at time t is denoted by C(t).
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12 Although the spin notation is applicable to the rotators (with R#A an L#a), the right (R)
and left (L) characterization of the scatterers, as used in ref. 2, is more convenient for our
discussion of the triangular lattice.
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Fig. 9. Typical example of propagation pattern in triangular lattice. The initial position of
the particle is shown by a full diamond; the propagation direction is along the upper left axis
of the lattice. The coordinates are marked in lattice unit lengths.

4.2. The Propagation Theorem

Theorem 2. For any initial distribution of scatterers on a triangular
lattice, a moving particle propagates in one particular direction through a
strip on the lattice; this strip and the direction of propagation along it depend
on the initial configuration of the scatterers at the origin (the initial position
of the particle) and at three neighboring sites; these four sites form a
parallelogram whose orientation determines the propagation strip.

Proof. First we show that for each possible initial scatterers con-
figuration, a propagation of the particle will occur in one of four strips, as
sketched in Fig. 10 (propagation directions and strips are indicated by
F(forwards), U(upwards), D1 and D2(downwards)). The strip in which the
particle will propagate (F, U, D1 or D2) depends on the initial velocity
direction C(t0), and on the initial state (R or L) of the four sites forming
a parallelogram which contains C(t0). There are four such parallelograms,
hence four possible directions (see Fig. 10):

�1 �2 �3 �6 � F, �1 �2 �4 �7 � U

�1 �2 �3 �8 � D1, �1 �2 �4 �5 � D2
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Fig. 10. Propagation strips on the triangular lattice. The initial velocity of the particle,
C(t0), is shown as the heavy arrow. When the particle arrives at one of the sites marked �V ,
it is trapped in one of the propagation strips bounded by parallel heavy solid lines. The four
propagation directions are indicated by arrows and capital letters (F, U, D1 , D2).

Then we demonstrate that once the particle is inside a strip (at one of the
sites indicated by �V in Fig. 10), it never leaves this strip. Like in 1-D, the
key ingredient of the ultimate unidirectional propagation of a particle
on a triangular lattice fully occupied with flipping (R and L) scatterers, is
the existence of a blocking mechanism. On the triangular lattice, this
mechanism produces a blocking pattern based on a zig-zag path of length
four (in lattice unit lengths), which contains parallel velocity vectors at
even or at odd times (see examples in Fig. 11), and which prohibits particle
motion more than one lattice unit length in the direction opposite to the
propagation direction; as a consequence any site visited by the particle can-
not be visited more than six times (see Corollary 2 below). The result is
that the particle propagates in a strip in the direction naturally defined by
the blocking pattern.

Assume that a blocking pattern has been formed at the sites visited by
the particle at times t, t+1, t+2 and t+3, so that the vectors C(t+) and
C((t+2)+), and C((t+1)+) and C((t+3)+) are parallel, respectively
(see Fig. 11a). Then such a zig-zag trajectory can continue in two ways:
either the particle continues directly its zig-zag motion at the next time step
(see Fig. 12a), or it turns back (Fig. 12b). Obviously, the direct continua-
tion of the zig-zag trajectory leads to propagative motion. So in order to
prove propagation, we only have to consider the result of the turn back
motion, and show that the particle nevertheless continues to move along
the strip defined by the zig-zag direction along which it was moving
from time t to time t+3. Now when the particle turns back, its trajectory
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Fig. 11. Examples of trajectories leading to propagation in one of the four directions (F, U,
D1 or D2). Light arrows indicate the successive velocity vectors of the particle after the initial
state (C(t0), heavy arrow).

Fig. 12. Formation of blocking pattern by direct forward zig-zag path (a), and by turn back
motion (b) followed by zig-zag trajectory emerging from parallelogram path (c). Light arrows
indicate the successive velocity vectors of the particle. Vectors C((t+7)+), C((t+8)+),
C((t+9)+), and C((t+10)+) are along the links �2 -�3 , �3 -�6 , �6 -�V , and �V -�, respec-
tively.
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creates a triangle (Fig. 12b) where from a zig-zag path emerges (Fig. 12c).
Propagation then occurs as a consequence of the fact that backward
motion at time t+4, necessarily produces blocking pattern, which forbids
the particle to move more than one lattice unit length in the backward
direction along the edge of the strip; as a result the particle will ultimately
move one step further along the same strip in the zig-zag direction in which
it was moving forward at time t+3. Therefore any trajectory eventually
forms a zig-zag of length 4, leading to propagation in the direction of the
zig-zag path. One can verify that after the turning back of the particle, the
trajectory forms a parallelogram (Fig. 12c). Now the path of the particle
through this parallelogram ends with three steps with velocity vectors:
C((t+7)+), C((t+8)+), C((t+9)+) that together form a zig-zag pattern
of length 3 (see caption of Fig. 12). But these three velocity vectors form
together with C((t+10)+) a new zig-zag of length 4, i.e., a new blocking
pattern (such as in Fig. 12a), shifted one lattice unit length in the direction
of propagation, with respect to the initial blocking pattern. The cases
shown in the figures used for the demonstration are typical and all other
cases are easily inferred from these typical situations, as the reader can
verify. Consequently, we have shown that a blocking pattern always gets
shifted by one lattice unit length along an edge of the strip in the direction
of propagation, either after two time steps if the previous zig-zag motion is
continued (Fig. 11a), or after seven time steps if the trajectory is turned
back and a parallelogram of motion is formed (Fig. 12c).

Thus, the particle will always propagate along a strip in the direction
determined by the blocking mechanism in this strip. For an (arbitrary)
given initial velocity of the particle, propagation can only take place in one
of four strips: two with angles \?�3 (strips F and U) and two with angles
\? (strips D1 and D2) with respect to the initial velocity direction. The
ratios of the occurrence of propagation along the four strips can be
evaluated from Fig. 10 by examining all possible paths leading to a strip
(see examples in Fig. 11) and by giving weights q and (1&q), to an R and
an L scatterer, respectively. For q= 1

2 , these ratios are 3 : 3 : 1 : 1 for the
directions F, U, D1 and D2 respectively.

Corollaries follow from Theorem 2.

Corollary 1. The shortest time to create a blocking pattern is four
time steps, and the longest time is ten time steps.

Proof. The proof follows straightforwardly by inspection of Figs. 12a
and 12c, where the zig-zag pattern of four velocities arranged in a W shape
forms after 4 and 10 successive displacements of the particle, respectively
(as verified by counting the number of arrows after the initial state).
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Corollary 2. The maximum number of visits to any site visited by
the particle on the triangular lattice is six, and the maximum number of
passages along any link connecting two neighboring sites is five.

Proof. Figure 12c shows the longest trajectory executed by the par-
ticle to move one unit length along the lattice in the propagation strip.
When the scatterer configuration is such that the particle is again forced
into a turn back motion (as in Fig. 12b), when visiting the next site on the
strip, the parallelogram of Fig. 12c repeats itself (shifted upside down by
one lattice unit length in the propagation direction). Then the middle site
of the parallelogram, which has been visited three times (site �6 in
Fig. 12c) is visited three more times, yielding a total number of six visits.
The number of visits to a site is then easily evaluated by counting the
number of incoming arrows pointing to the site. For instance, in Fig. 12c,
there are three incoming arrows to site �6 , and, when at the next time step,
the particle undergoes backward motion thereby producing again the
parallelogram trajectory (shifted upside down to the right), the three
arrows pointing towards site �3 are now pointing to site �6 , which yields
a total number of six visits to site �6 . This is the maximum number of
visits since the blocking mechanism prevents the particle from ever coming
back to this site. Similarly the number of passages along a link between
two neighboring sites is evaluated by counting the number of arrows on
that link. In the above example, which shows the typical case where the
particle undergoes the longest possible trajectory to proceed in the propa-
gation strip, the number of passages along link �3 -�6 is 3+2=5.

Corollary 3. All visited sites located on one edge of the propaga-
tion strip are in the same state (R or L), and all sites located on the other
edge are in the opposite state (L or R, respectively).

Proof. The blocking mechanism produces a zig-zag pattern with
alternating velocity vectors (see Figs. 11 and 12); as a result the states of
the visited sites must be alternately R and L, or L and R. Consequently,
the propagation dynamics triggers a reorganization of the states of the
scatterers of the visited sites.

4.3. Statistical Properties

We characterize the propagation process by the increase in the value
of the coordinate of the particle along one edge of the propagation strip,
as illustrated in Fig. 13. We consider the situation where the particle visits
site r for the first time, and we analyze how the particle proceeds from site
r to the (next) site with coordinate r+1 on the same side of the strip.
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Fig. 13. Particle motion from site r to site r+1 along the propagation strip via site
r$=r+ 1

2 . The arrow pointing to the right shows the propagation direction.

Obviously, before arriving at site r+1, the particle must go through a site
with coordinate r$=r+ 1

2 on the other side of the strip (see Fig. 13). At
both site r and site r+ 1

2 one of two possiblities occurs: either the particle
trajectory continues a forward zig-zag path or it turns back. Thus, the
transition from r to r+1 can take place in four possibile ways:

( ff ) the particle continues a forward zig-zag path at both sites r and
r+ 1

2;

( fb) the particle continues a zig-zag path at r and turns back at
r+ 1

2;

(bf ) the particle turns back at r, and goes into a forward zig-zag
path at r+ 1

2 ;

(bb) the particle turns back both at r and at r+ 1
2.

So, in case ( ff ) the transition from r to r+1 occurs in two forward
time steps (see Fig. 12a), and obviously takes longer in the other cases.
Indeed, in Section 4.2, we showed that if the particle turns back (see
Fig. 12b), it takes seven (6+1) time steps before it performs a zig-zag path
again along the propagation strip (see Fig. 12c). Therefore, the transition
takes eight times steps in case ( fb)&(1+7) corresponding to one step
forward and one back turn��and (7+1) time steps in case (bf ), while four-
teen time steps are necessary in case (bb)&(7+7) corresponding to two
back turns. It is easy to verify that the occurence probabilities of the
various cases are: q(1&q) for case ( ff ), q2 for case ( fb), (1&q)2 for case
(bf ), and (1&q) q for case (bb).

From the above results, we can write the equation for the first visit
probability at site r+1 at time t as

P1(r+1, t)=[q2+(1&q)2] P1(r, t&8)

+q(1&q)[P1(r, t&2)+P1(r, t&14)] (4.1)
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It follows from this expression that the average time it takes the particle
to propagate one lattice unit length along a side of a strip is (t) =
8[q2+(1&q)2]+16q(1&q)=8 time steps, so that the average propaga-
tion velocity reads

(c) =
1

(t)
=

1
8

(4.2)

(in lattice unit lengths per time step), independently of q and of the direc-
tion of propagation.

When the particle is propagating in a strip, it takes an even number
of time-steps to move from one site to the next on the edge of the strip in
the forward direction (e.g., from r to r+1 via r$ in Fig. 13) because of the
blocking zig-zag pattern.13 Therefore when the particle arrives for the first
time at site r+1 (see Fig. 13), site r cannot have been visited more than
four times (as can be checked with Fig. 12); so we can also write Eq. (4.1)
as

P1(r+1, t)=q(1&q) P1(r, t&2)+ :
4

:=2

P:(r, t&2) (4.3)

where, as can be verified using Fig. 13 to explore all possible paths,

P2(r, t&2)=(1&q)2 P1(r, t&8)

P3(r, t&2)=q2P1(r, t&8) (4.4)

P4(r, t&2)=(1&q) qP1(r, t&14)

Now we define the total probability P(r, t)=�4
:=1 P:(r, t), which, with

(4.4), is given by

P(r, t)=P1(r, t)+[q2+(1&q)2] P1(r, t&6)+q(1&q) P1(r, t&12) (4.5)

In (4.5), we use Eq. (4.1) for P1(r, t$) with t$=t, t&6, t&12, and in the
result, we combine the various terms to obtain a closed equation for the
total probability

P(r, t)=q(1&q)[P(r&1, t&2)+P(r&1, t&14)]

+[q2+(1&q)2] P(r&1, t&8) (4.6)
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We observe that P(r, t) obeys the same equation as P1(r, t), Eq. (4.1), and
it can be shown(7) that its continuous limit has the same structure as
Eq. (3.43).

4.4. Long-Time Behavior

To investigate the long-time behavior of the particle motion, we
proceed along the same lines as in the one-dimensional case. We start with
the Laplace�Fourier transformation of Eq. (4.1), which yields

e@k _e14sf� k(s)& :
7

m=1

e2msfk(t=14&2m)&
=[q2+(1&q)2] _e6sf� k(s)& :

3

m=1

e2msfk(t=6&2m)&
+q(1&q) _(1+e12s) f� k(s)& :

6

m=1

e2msfk(t=12&2m)& (4.7)

where fk(t) denotes the space-Fourier transform of P1(r, t), and f� k(s) its
Laplace transform. In the limit k=0, we obtain

f� k=0(s)=
h(s)
g(s)

(4.8)

with

h(s)=_ :
7

m=1

e2msfk=0(14&2m)&&q(1&q) _ :
6

m=1

e2msfk=0(12&2m)&
&[q2+(1&q)2] _ :

3

m=1

e2msfk=0(6&2m)& (4.9)

and

g(s)=e14s&q(1&q) e12s&[q2+(1&q)2] e6s&q(1&q) (4.10)

To solve Eq. (4.8), we need to know the ``initial conditions,'' i.e., the values
of fk(t) at t=2m, for m=0,..., 6. The values of f (r, t) at t=0,..., 12 are
obtained from the particle dynamics discussed in the previous section and
are given in Appendix B, along with their corresponding Fourier trans-
forms. We insert these values in (4.9), and, since we are interested in the

602 Grosfils et al.



File: 822J 241829 . By:XX . Date:12:10:99 . Time:14:35 LOP8M. V8.B. Page 01:01
Codes: 1772 Signs: 989 . Length: 44 pic 2 pts, 186 mm

long-time behavior, we consider the limit f� k=0(s � 0) by expanding f� k=0(s)
to lowest significant order in s; the result is

lim
s � 0

f� k=0(s)=
1
8s

(4.11)

which, by inverse transformation, yields

lim
t � �

fk=0(t)= 1
8=(c) (4.12)

Thus, as for the one-dimensional case, we find that in the long-time
limit, fk=0(t � �)#limt � � �r P1(r, t) is equal to the average propagation
velocity, with the difference that, in the triangular lattice, (c) is indepen-
dent of q. Furthermore it can be shown(7) that the long-time solution of
Eq. (4.1) is given by

P1(r, t)| t>>1=�2
?

1
(#~ r)1�2 exp &

(t&(t) )2

2#~ r
(4.13)

with (t) =r�(c)=8r and #~ =72pq. In Fig. 14 we present numerical
simulations and show that our theoretical result (4.13) is in agreement with
the simulation data.

Fig. 14. Long-time behavior in triangular lattice. P1(r, t) as a function of r after 7616 time-
steps: numerical data from simulation measurements (black dots) compared with analytical
result (4.13) (full curve).
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5. CONCLUDING COMMENTS

1. By replacing spins A and a by 1's and 0's respectively, the initial
state of the 1-D spin lattice can be read as the input string of the tape of
a Turing machine whose control device is the particle; the controller per-
forms operations according to the rules of the flipping spins and writes the
output on the tape as the final spin configuration also converted into 1's
and 0's. Here the computation algorithm performs the binary addition of
the initial string with itself followed by a ``XOR'' with 1 (which is equiv-
alent to 1 � 0 plus a shift). In the triangular lattice, one can similarly inter-
pret the state of the scatterers along the edges of the propagation strip as
R�L � 0�1; then the algorithm performs the logical operations ``AND'' and
``NAND'' with 0 alternately on each side of the strip, which transforms a
random sequence of 0's and 1's into a periodic string . . .01010101.. . .

2. After the passage of the particle through the one-dimensional
lattice, all the spins are in the state opposite to their initial state (A � a)
with one lattice site shift in the direction opposite to the propagation direc-
tion. Consider that the the system is made periodic (i.e., on a circle) by
identifying the first and last sites of the chain, and that the particle
propagates clockwise on the circle; then there is a counterclockwise drift
(two lattice sites back) of the initial spin configuration every two cycles,
and the average propagation velocity is given by c(q)= 1

2 [1�(3&2q)+
1�(3&2(1&q))]. Similarly, when, in the triangular lattice, one attaches the
two beginning and two end sites of a strip crosswise, the particle undergoes
periodic motion on the strip.

3. Propagation has also been observed in the square lattice fully
occupied with flipping scatterers when the scatterers are distributed peri-
odically over the lattice.(2) However, not in all such cases does propagation
occur during the time span of the simulations (�107 time steps). It remains
therefore an open question whether propagation on the square lattice, peri-
odically covered with flipping scatterers, always occurs or only for a certain
class of periodic scatterer patterns. When it occurs, propagation seems
always to take place in a strip (like on the triangular lattice), which shows
similarity with the glider behavior in the Game of Life.(10) Although the
precise blocking mechanism is not known for the square lattice, ``imme-
diate'' propagation can occur, which would imply then the possibility of an
``instantaneous'' blocking on the square lattice.

4. Propagation on the one-dimensional and triangular lattices occurs
for scattering angles of \? and \2?�3, respectively. For those cases on the
periodically occupied square lattice where propagation has been found,
the scattering angle equals \?�2, while for the randomly occupied square
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lattice, the maximum angle scattering rule yields a(n) (average) value larger
than ?�2. On the other hand, a scattering angle of \?�3 on the triangular
lattice leads to the motion of the particle on a honeycomb (hexagonal)
lattice where no propagation seems to occur for flipping scatterers.(2) One
might therefore conjecture that propagation only occurs in lattices fully
occupied with flipping scatterers, when the scattering angle is �?�2 in
absolute value.

5. Notice that in the development performed for the triangular lat-
tice, we have not used the regularity property of the Bravais lattice. So the
results should not be dependent of this property and should also be valid
for the random triangular lattice such as the Delaunay lattice (see Fig. 1),
provided the scattering rule is set such that the particle is deflected with the
largest possible angle (>?�2). However, because of the topological ran-
domness of the Delaunay lattice, once cannot predict whether the trajec-
tory of the particle will remain unbounded.

6. To the best of our knowledge, it is an open question whether par-
ticle dynamics in three dimensional lattices with flipping scatterers can
exhibit propagation or other peculiar behaviors.

APPENDIX A

Here we derive the expression for the propagation velocity of a par-
ticle moving in a 1-D lattice with flipping spins, directly from the particle
dynamics described in Section 2.2. The average asymptotic propagation
velocity is given by

(c) = lim
t>>2t

C(t) (A.1)

with

C(t)=
R(t)&R(0)

t
(A.2)

and where 2t is the unit time step (2t=1, i.e., the limit in (A.1) will be
taken as t � �). It follows by iteration from Eq. (2.1), that

R(t)&R(0)=C(t&1)+C(t&2))+ } } } +C(0)= :
t&1

{=0

C({) (A.3)

When we consider the velocity of the particle at two successive time-
steps, five cases must be examined as described in Table 1 (see also
Fig. 15). If the particle arrives at a site at time {&1 with velocity C({&1)
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Table 1

Fig. 15
The particle arrives

at site r for the
with velocity

C({&1)
and leaves site r with

velocity C({)
The next site is
visited for the

(a) first time C= +1 C= +1 first time
(b) first time C= +1 C= &1 second time
(c) second time C= +1 C= +1 first time
(d) second time C= &1 C= +1 second time
(e) third time C= &1 C= +1 second time

and leaves the site with velocity C({), we observe that when taking the sum
over the velocities, all C({&1)'s and C({)'s which do not cancel are those
which correspond to particle displacements leading to a site visited by the
particle for the first time. So the sum �{ C({) is equal to the number Nf of
displacements which, during time t, lead to a first visit. Now, since the
particle undergoes a displacement at each time-step, the total number
of displacements Nt during time t, is equal to t. Consequently, from
(A.1)�(A.3), we have

(c) = lim
t � �

1
t

[R(t)&R(0)]= lim
t � �

1
t

:
t&1

{=0

C({)= lim
t � �

Nf (t)
Nt(t)

(A.4)

Fig. 15. Illustration of the five cases discussed in Appendix A and described in Table 1.
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and, since Nf (t)�Nt(t) is just �r P1(r, t), it follows that

(c) = lim
t � �

:
r

P1(r, t)= lim
t � �

fk=0(t)=
1

3&2q
#c(q) (A.5)

where we have used (3.16).

APPENDIX B

The ``initial conditions'' for the computation of the long-time behavior
of the function fk=0(t)#�r P1(r, t) in Section 4.4, are given by the follow-
ing expressions

f (r, t=0)=$r, 0

f (r, t=2)=q(1&q) $r, 1

f (r, t=4)=q2(1&q)2 $r, 2

f (r, t=6)=q3(1&q)3 $r, 3 (B1)

f (r, t=8)=q4(1&q)4 $r, 4+[q2+(1&q)2] $r, 1

f (r, t=10)=q5(1&q)5 $r, 5+2q(1&q)[q2+(1&q)2] $r, 2

f (r, t=12)=q6(1&q)6 $r, 6+3q2(1&q)2 [q2+(1&q)2] $r, 3

and correspondingly, in Fourier transform, by

fk(0)=1

fk(2)=q(1&q) e@k

fk(4)=q2(1&q)2 e2@k

fk(6)=q3(1&q)3 e3@k (B2)

fk(8)=q4(1&q)4 e4@k+[q2+(1&q)]2 e@k

fk(10)=q5(1&q)5 e5@k+2q(1&q)[q2+(1&q)2] e2@k

fk(12)=q6(1&q)6 e6@k+3q2(1&q)2 [q2+(1&q)2] e3@k
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